Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Brian K. Nicholson* and Susanna E. Thwaite

Chemistry Department, University of Waikato, Private Bag 3105, Hamilton, New Zealand

Correspondence e-mail:
b. nicholson@waikato.ac.nz

Key indicators

Single-crystal X-ray study
$T=83 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.096$
Data-to-parameter ratio $=11.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

Tris(pentafluorophenyl)phosphine oxide

Crystals of the title compound, $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}=\mathrm{O}$ or $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OP}$, have two independent molecules in the asymmetric unit, with average $\mathrm{P}=\mathrm{O}$ and $\mathrm{P}-\mathrm{C}$ bond lengths of 1.467 (2) and 1.817 (2) Å, respectively, and an average $\mathrm{O}=\mathrm{P}-\mathrm{C}$ angle of 112.9 (1) ${ }^{\circ}$.

Comment

Crystals of the title compound, (I), contain two molecules of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}=\mathrm{O}$ in the asymmetric unit, but these are not significantly different. Average structural features include a $\mathrm{P}=\mathrm{O}$ bond length of $1.467(2) \AA$, a $\mathrm{P}-\mathrm{C}$ length of 1.817 (2) \AA, a $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle of $103.5(1)^{\circ}$ and an $\mathrm{O}=\mathrm{P}-\mathrm{C}$ angle of $112.9(1)^{\circ}$. These compare with results reported for $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}$ (Karipides \& Cosio, 1989), which has longer $\mathrm{P}-\mathrm{C}$ bonds (1.831 A) but essentially identical $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles (103.3 ${ }^{\circ}$. In $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}=\mathrm{O}$ (Thomas \& Hamor, 1993; Spek, 1987; Brock et al., 1985), the $\mathrm{P}=\mathrm{O}$ bond is longer (1.492 \AA), the $\mathrm{P}-\mathrm{C}$ bonds shorter $(1.803 \AA)$, and the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ bonds more open (106.4°). This can be rationalized by Bent's rule (Bent, 1961a,b), the electron-withdrawing $-\mathrm{C}_{6} \mathrm{~F}_{5}$ groups concentrating relatively more p-orbital character in the $\mathrm{P}-\mathrm{C}$ bonds, compared with the $-\mathrm{C}_{6} \mathrm{H}_{5}$ ones.

Experimental

Crystals of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}=\mathrm{O}$ were isolated in low yield from a reaction involving $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{PAuCl}$ and $\mathrm{Ag}_{2} \mathrm{O}$. Better syntheses are available (Emeleus \& Miller, 1966). Crystals were obtained from a cooled ether-pentane solution.

Crystal data

$\mathrm{C}_{18} \mathrm{~F}_{15} \mathrm{OP}$
$M_{r}=548.15$
Monoclinic, $P 2_{1} / c$
$a=9.562(1) \AA$.
$b=20.489$ (1) A
$c=18.303$ (1) \AA
$\beta=95.95$ (1) ${ }^{\circ}$
$V=3566.5(5) \AA^{3}$
$Z=8$
$D_{x}=2.042 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 7905
reflections
$\theta=2-26^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=83$ (2) K
Needle, white
$0.46 \times 0.18 \times 0.16 \mathrm{~mm}$

Received 26 September 2003
Accepted 7 October 2003
Online 15 October 2003

Data collection

Siemens SMART CCD diffractometer
ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.867, T_{\text {max }}=0.951$
14186 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.096$
$S=1.03$
7300 reflections
631 parameters

7300 independent reflections
5418 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-11 \rightarrow 11$
$k=0 \rightarrow 25$
$l=-22 \rightarrow 22$

Data collection: SMART (Siemens, 1994); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Version 1.64; Farrugia, 1999).

References

Bent, H. A. (1961a). J. Inorg. Nucl. Chem. 19, 43-50.
Bent, H. A. (1961b). Chem. Rev. 61, 275-311.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brock, C. P., Schweizer, W. B. \& Dunitz, J. D. (1985). J. Am. Chem. Soc. 107, 6964-6970.
Emeleus, H. J. \& Miller, J. M. (1966). J. Inorg. Nucl. Chem. 28, 662-665.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Figure 1
The structure of one of the independent molecules of (I), with displacement ellipsoids drawn at the 50% probability level (Farrugia, 1997).

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Karipides, A. \& Cosio, C. M. (1989). Acta Cryst. C45, 1743-1745.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1987). Acta Cryst. C43, 1233-1235.
Thomas, J. A. \& Hamor, T. A. (1993). Acta Cryst. C49, 355-357.

